Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra
نویسندگان
چکیده
منابع مشابه
Reconstruction of non-uniformly sampled five-dimensional NMR spectra by signal separation algorithm
A method for five-dimensional spectral reconstruction of non-uniformly sampled NMR data sets is proposed. It is derived from the previously published signal separation algorithm, with major alterations to avoid unfeasible processing of an entire five-dimensional spectrum. The proposed method allows credible reconstruction of spectra from as little as a few hundred data points and enables sensit...
متن کاملDownsampling Non-Uniformly Sampled Data
Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/D followed by picking out every Dth sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT) algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate nonuniformly sampled sign...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملPersonalized Ranking for Non-Uniformly Sampled Items
We develop an adapted version of the Bayesian Personalized Ranking (BPR) optimization criterion (Rendle et al., 2009) that takes the non-uniform sampling of negative test items — as in track 2 of the KDD Cup 2011 — into account. Furthermore, we present a modified version of the generic BPR learning algorithm that maximizes the new criterion. We use it to train ranking matrix factorization model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomolecular NMR
سال: 2019
ISSN: 0925-2738,1573-5001
DOI: 10.1007/s10858-019-00265-1